
SwRI scientists study the rugged surface of near-Earth asteroid Bennu
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
As the days count down to NASA's OSIRIS-REx spacecraft's Touch-And-Go asteroid sample collection attempt, Southwest Research Institute scientists have helped determine what the spacecraft can expect to return from the near-Earth asteroid Bennu's surface. Three papers published online by Science on Oct. 8 discuss the color, reflectivity, age, composition, origin and distribution of materials that make up the asteroid's rough surface.
NASA's OSIRIS-REx spacecraft mission's first attempt to pick up the sample is scheduled for Oct. 20, 2020, and the spacecraft is scheduled to return the sample back to Earth on Sept. 24, 2023. In advance of the sample collection, the science team published a set of six papers in Science and Science Advances to share its scientific findings to date while building interest in the upcoming event.
A new research study conducted by City, University of London's Professor Christoph Bruecker and his team, has revealed that fish scale arrays generate a streaky base flow on the surface of the animal which yields important clues into reducing drag - the aerodynamic force that opposes an aircraft's motion through the air - by more than 25 percent.
Familiar stars shine, nebulae glow, and nearby galaxies tantalize in a new panorama of the northern sky assembled from 208 pictures captured by NASA's Transiting Exoplanet Survey Satellite (TESS). The planet hunter imaged about 75% of the sky in a two-year-long survey and is still going strong.
Scientists have made significant progress in understanding the sources of radiation events that could impact human space-flight operations. Relativistic Electron Precipitation (REP) events are instances when high energy electrons move through areas of space at significant fractions of the speed of light. These REP events may pose challenges to human spaceflight, specifically during extravehicular activity (EVA).
A top goal in cosmology is to precisely measure the total amount of matter in the universe, a daunting exercise for even the most mathematically proficient. A team led by scientists at the University of California, Riverside, has now done just that.
In the current issue (25 September) of the prestigious journal Science Advances, Chinese and German scientists report for the first time on time-resolved measurements of the radiation on the moon. The measurements show an equivalent dose rate of about 60 microsieverts per hour. In comparison, on a long-haul flight from Frankfurt to New York, it is about 5 to 10 times lower, and on the ground well over 200 times lower.
Scientists discovered in 1996 that sunquakes are linked to solar flares. Now, using helioseismic holography, scientists have analyzed a 2011 flare and shown that the impulsive source that generated the sunquake, and the refracted acoustic waves that later rippled the solar surface, was submerged 1,000 kilometers below the photosphere and flare. Further sunquake study could reveal if submerged sources are common and whether they can predict the appearance of flares and potential impact on Earth.
Data from Southwest Research Institute-led instruments aboard ESA's Rosetta spacecraft have helped reveal auroral emissions in the far ultraviolet around a comet for the first time.
SAN ANTONIO -- Sept. 16, 2020 -- A Southwest Research Institute scientist has identified stellar phosphorus as a probable marker in narrowing the search for life in the cosmos. She has developed techniques to identify stars likely to host exoplanets, based on the composition of stars known to have planets, and proposes that upcoming studies target stellar phosphorus to find systems with the greatest probability for hosting life as we know it.