
New approach eradicates breast cancer in mice
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
A new approach to treating breast cancer kills 95-100% of cancer cells in mouse models of human estrogen-receptor-positive breast cancers and their metastases in bone, brain, liver and lungs. The newly developed drug, called ErSO, quickly shrinks even large tumors to undetectable levels.
A new Dartmouth-led study published this month in the New England Journal of Medicine sheds light on the role US health systems play concerning racial inequality in prescription pain medicine receipt.
The in-house development of a novel SARS-CoV-2 test, creation of the Molecular Diagnostics Lab at the Fralin Biomedical Research Institute, and their importance to public health are chronicled in a new article in Nature Communications.
Scientists from the IKBFU with colleagues obtained calcium chelidonate via a semisynthesis. This substance accelerates the transformation of stem cells into osteoblasts - its use is promising as a treatment for bone diseases. A plant, Saussurea controversa, used in medicine since ancient times, served as a source for synthesis.
The remains of microscopic plankton blooms in near-shore ocean environments slowly sink to the seafloor, setting off processes that forever alter an important record of Earth's history, according to research from geoscientists, including David Fike at Washington University in St. Louis.
Ten years after one of the largest nuclear accidents in history spewed radioactive contamination over the landscape in Fukushima, Japan, a University of Georgia study has shown that radioactive contamination in the Fukushima Exclusion Zone can be measured through its resident snakes.
Certain regions of the SARS-CoV-2 genome might be a suitable target for future drugs. This is what researchers at Goethe University, together with their collaborators in the international COVID-19-NMR consortium, have now discovered. With the help of dedicated substance libraries, they have identified several small molecules that bind to certain areas of the SARS-CoV-2 genome that are almost never altered by mutations.
Although photovoltaic systems constitute a promising way of harnessing solar energy, power grid managers need to accurately predict their power output to schedule generation and maintenance operations efficiently. Scientists from Incheon National University, Korea, have developed a machine learning-based approach that can more accurately estimate the output of photovoltaic systems than similar algorithms, paving the way to a more sustainable society.
Researchers in the BOTTLE Consortium, including from the National Renewable Energy Laboratory (NREL) and the University of Portsmouth, have identified using enzymes as a more sustainable approach for recycling polyethylene terephthalate (PET), a common plastic in single-use beverage bottles, clothing, and food packaging that are becoming increasingly relevant in addressing the environmental challenge of plastic pollution. An analysis shows enzyme-recycled PET has potential improvement over conventional, fossil-based methods of PET production across a broad spectrum of energy, carbon, and socioeconomic impacts.
Linear molecules can capture and bind free electrons through the permanent dipole moment interaction. Physicists from the University of Innsbruck have achieved laboratory confirmation of the existence of dipole-bound states. Such states can form an intermediate step in the creation of negatively charged molecules and explain the existence of negative ions in interstellar clouds in space.