
More carbon emissions will kill more people; here's how many
Research News Release
EurekAlert! provides eligible reporters with free access to embargoed and breaking news releases.
Eligibility GuidelinesEurekAlert! offers eligible public information officers paid access to a reliable news release distribution service.
Eligibility GuidelinesEurekAlert! is a service of the American Association for the Advancement of Science.
A just-published study coins a new metric: the "mortality cost of carbon." That is, how many future lives will be lost--or saved--depending on whether we increase or decrease our current carbon emissions. If the numbers hold up, they are quite high.
Similar to the election needle and the stock market index, scientists have developed a new tracking system to detect danger to rainforests around the world. The data to build the index was culled from advanced satellite measurements of climate and vegetation of each tropical region on Earth.
Many species within Kenya's Tana River Basin will be unable to survive if global temperatures continue to rise as they are on track to do - according to new research from the University of East Anglia. A new study published in the journal PLOS ONE outlines how remaining within the goals of the Paris Agreement would save many species. The research also identifies places that could be restored to better protect biodiversity and contribute towards global ecosystem restoration targets.
To meet an ambitious goal of carbon neutrality by 2045, California's policymakers are relying in part on forests and shrublands to remove CO2 from the atmosphere, but researchers at the University of California, Irvine warn that future climate change may limit the ecosystem's ability to perform this service.
Researchers at the University of Pittsburgh Swanson School of Engineering and the Mascaro Center for Sustainable Innovation used the City of Pittsburgh to create a model built upon the design, materials and purpose of commercial buildings to estimate their energy usage and emissions.
Common yeast are able to adapt and thrive in response to a long-term rise in temperature by changing the shape, location and function of some of their proteins. The surprising findings demonstrate the unappreciated plasticity in the molecular and conformational level of proteins and bring the power of molecular biology to the organismal response to climate change. Results from the Zhou lab at the Buck Institute are published in Molecular Cell.
Triggered by the 2015-16 El Niño, extreme drought and associated mega-wildfires caused the death of around 2.5 billion trees and plants and emitted 495 million tonnes of CO2 from an area that makes up just 1.2 per cent of the entire Brazilian Amazon rainforest, and 0.01 per cent of the whole biome.
Tokyo, Japan - Researchers from Tokyo Metropolitan University have analyzed long-term precipitation radar data from satellites and found significantly enhanced rainfall over the most recent decade during the annual Meiyu-Baiu rainy season in East Asia. The data spans 23 years and gives unprecedented insight into how rainfall patterns have changed. They showed that the increased rainfall was driven by the decadal increased transport of moisture from the tropics and frequent occurrence of the upper tropospheric trough over the front.
Investigating how climate affects intense rainstorms across Europe, climate experts have shown there will be a significant future increase in the occurrence of slow-moving intense rainstorms. The scientists estimate that these slow-moving storms may be 14 times more frequent across land by the end of the century. It is these slow-moving storms that have the potential for very high precipitation accumulations, with devastating impacts, as we saw in Germany and Belgium.
Researchers from the University of Tsukuba find that the combined effects of ocean warming and acidification in temperate marine ecosystems are resulting in a loss of kelp habitat and a shift to a simple turf-dominated ecosystem. Such changes will lead to a loss of the ecosystem services provided by productive macroalgal forests or tropicalized coral-dominated reefs. These results highlight the need for reductions in greenhouse gas emissions.